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RANDOMIZED SAMPLING FOR BASIS FUNCTION
CONSTRUCTION IN GENERALIZED FINITE ELEMENT METHODS\ast 
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Abstract. In the framework of generalized finite element methods for elliptic equations with
rough coefficients, efficiency and accuracy of the numerical method depend critically on the use of
appropriate basis functions. This work explores several random sampling strategies that construct
approximations to the optimal set of basis functions of a given dimension, and proposes a quantitative
criterion to analyze and compare these sampling strategies. Numerical evidence shows that the best
results are achieved by two strategies, Random Gaussian and Smooth Boundary sampling.
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1. Introduction. This paper considers techniques for constructing basis func-
tions for generalized finite element methods applied to elliptic equations with rough
coefficients. The elliptic partial differential equation is

(1.1)

\Biggl\{ 
 - div (a(x)\nabla u(x)) = f(x) , x \in \Omega ,

u(x) = 0 , x \in \partial \Omega ,

with f \in L2(\Omega ) and a uniformly elliptic coefficient function a \in L\infty (\Omega ), that is, there
exist \alpha \ast , \beta \ast > 0 such that a(x) \in [\alpha \ast , \beta \ast ] for all x \in \Omega . Note that we assume only
L\infty regularity of a, so the coefficient could be rather rough, which poses challenges
for conventional numerical methods, such as the standard finite element method with
local polynomial basis functions.

Numerical methods can be designed to take advantage of certain analytical prop-
erties of problem (1.1). A classical example is when a is two-scale, that is, a(x) =
a0(x,

x
\varepsilon ), where a0(x, y) is 1-periodic with respect to its second argument. (Thus, \varepsilon 

characterizes explicitly the small scale of the problem.) Using the theory of homog-
enization [4, 24], several numerical methods have been proposed over the past few
decades to capture the homogenized solution of the problem and possibly also to pro-
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vide some microscopic information. Approaches of this type include the multiscale fi-
nite element method [8, 13, 14, 12] and the heterogeneous multiscale method [6, 7, 20].

While methods designed for numerical homogenization can be applied to the
cases of rough media (a \in L\infty ), the lack of favorable structural properties often
degrades the efficiency and convergence rates. Various numerical methods have been
proposed for L\infty media, including the generalized finite element method [2], upscaling
based on harmonic coordinates [22], elliptic solvers based on \scrH -matrices [3, 10], and
Bayesian numerical homogenization [21], to name just a few. Our work uses the
framework of the generalized finite element method (gFEM) of [2]. The idea is to
approximate the local solution space by constructing good basis functions locally and
to use either the partition-of-unity or the discontinuous Galerkin method to obtain a
global discretization.

According to the partition-of-unity finite element theory, which we will recall
briefly in section 2, the global error is controlled by the accuracy of the numerical
local solution spaces. Thus, global performance of the method depends critically on
efficient preparation of accurate local solution spaces. Towards this end, Babu\v ska
and Lipton [1] studied the Kolmogorov width of a finite-dimensional approximation
to the optimal solution space, and showed that the Kolmogorov width decays almost
exponentially fast, as we will recall in section 2. Different deterministic approaches
under this framework with oversampling are investigated and numerically compared
in [26]. The basis construction algorithm proposed in [1] follows the analysis closely:
a full list of a-harmonic functions (up to discretization) is obtained in each patch, and
local basis functions are obtained by a ``postprocessing"" step of solving a generalized
eigenvalue problem to select modes with highest ``energy ratios."" Since the rough-
ness of a necessitates a fine discretization in each patch, and thus a large number
of a-harmonic functions per patch, the overall computational cost of this strategy to
construct local basis functions is high.

Our work is based on the gFEM framework [2] together with the concept of
optimal local solution space via Kolmogorov width studied in [1]. The idea of intro-
ducing random sampling or oversampling to construct local basis functions is studied
in [5, 9, 17], where these methods are shown to be computationally effective. However,
a systematic investigation of random sampling in the context of numerical PDEs is
lacking. There is no criterion that justifies the ``goodness"" of basis functions construc-
ted through random sampling. The main contribution of this paper is twofold. We
systematically examine these random sampling approaches and introduce a criterion
that evaluates different sets of basis functions; furthermore, we propose a random
projection method that obtains a set of a-harmonic basis functions automatically.
Randomized algorithms have been shown to be powerful in reducing computational
complexities in looking for low rank factorization of matrices. Since the generalized
eigenvalues decay almost exponentially, the local solution space is of approximate low
rank, and random sampling approaches can capture this space effectively. The effi-
ciency of the approach certainly depends on the particular random sampling strategy
employed; we explore several strategies and identify the most successful ones.

As mentioned above, the idea of random sampling or oversampling to construct
local basis functions is not completely new. In [9], the authors proposed to compute
a generalized eigenvalue problem (using the stiffness matrix and the mass matrix) as
a postprocessing step for basis selection. Similar strategies have been considered in
the discontinuous Galerkin framework [17], but these approaches require a full basis
of local solutions. The random sampling strategy is incorporated in [5] to improve
efficiency in the offline stage.
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RANDOMIZED SAMPLING FOR gFEM 1155

There are several important differences between our approaches and those of
[9, 17, 5]. First, we provide a quantitative criterion for evaluating the efficiency and
accuracy of different random sampling strategies. Second, we find that the best ran-
domized sampling strategy is not necessarily based on randomly assigning boundary
conditions, as done in [5]. As indicated by the proposed criterion, a good sampling
strategy should eliminate boundary layers and maintain much of the ``energies"" of the
samples in the interior. Third, instead of using a stiffness-mass ratio as done in [9],
the selection process here is guided by the behavior of the restriction operator (see
section 2), which is proved to be optimal in [1].

Other basis construction approaches based on the gFEM framework have been
explored in the literature, mostly based on a similar offline-online strategy. In the
offline step, one prepares the solution space (either local or global). In the online
step, one assembles the basis through the Galerkin framework (see, for example,
[19, 23, 15]). The random sampling strategy can also be explored in these contexts.

The organization of the rest of the paper is as follows. We review preliminaries
in section 2, including the basics of basis construction and error analysis. In sec-
tion 3, we describe the random sampling framework and present a few particular
sampling strategies. We connect and compare our framework with the randomized
singular value decomposition (rSVD) in section 3.3. To compare the various sampling
approaches, according to the criterion we propose in section 4, a random sampling
strategy with higher energies achieves smaller Kolmogorov distances to the optimal
basis. Numerical examples in section 5 demonstrate the effectiveness of our approach.

This paper only serves as the first step towards evaluating randomly constructed
basis functions, and there are many other choices and parameters that we do not fully
investigate. One example is the ratio of the enlargement: a bigger enlarged domain
gives faster decay in singular values, but the numerical cost is fairly high. These issues
are left to future research.

2. Previous results and context. Here we provide some preliminary results
about the gFEM, including the concept of low rank solution space, and review the
construction of basis functions for the local solution space.

We restate the elliptic equation (1.1) as follows:

(2.1)

\Biggl\{ 
\scrL u =  - div (a(x)\nabla u(x)) = f(x) , x \in \Omega ,

u(x) = 0 , x \in \partial \Omega ,

with 0 < \alpha \ast \leq a(x) \leq \beta \ast , where \scrL denotes the elliptic operator. The weak formulation
of (2.1) is

\langle a(x)\nabla u ,\nabla v\rangle L2(\Omega ) = \langle f , v\rangle L2(\Omega )

for all test functions v, where \langle f, g\rangle L2(\Omega ) :=
\int 
\Omega 
f(x)g(x)dx.

In the Galerkin framework, one constructs the solution space first. Given the
following approximation space, defined by basis functions \phi i, i = 1, 2, . . . , n,

(2.2) Span\{ \phi i , i = 1, 2, . . . , n\} ,

we substitute the ansatz U =
\sum n

i=1 ci\phi i into (2.1) to obtain

n\sum 
j=1

\langle a(x)\nabla \phi j ,\nabla \phi i\rangle L2(\Omega )cj = \langle f , \phi i\rangle L2(\Omega ) .
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We write this system in matrix form as follows:

(2.3) \sansA \vec{}c = \vec{}b ,

where \sansA is a symmetric matrix with entries \sansA mn = \langle a\nabla \phi m ,\nabla \phi n\rangle L2(\Omega ), and \vec{}c (with
\vec{}cm = cm) is a list of coefficients to be determined. The right-hand side is the load

vector \vec{}b, with entries \vec{}bm = \langle f , \phi m\rangle L2(\Omega ).
It is well known that the following quasi-optimality holds:

\| u - U\| \scrE (\Omega ) \leq C\| u - \scrP u\| \scrE (\Omega ) ,

where C is some constant depending on \alpha \ast and \beta \ast , and \scrP u is the projection of the
true solution u onto the space (2.2). Here the energy norm on any subdomain \omega \subset \Omega 
is defined by

(2.4) \| v\| \scrE (\omega ) = \langle a\nabla v ,\nabla v\rangle 1/2L2(\omega ) :=

\biggl[ \int 
\omega 

a| \nabla v(x)| 2dx
\biggr] 1/2

.

Thus to guarantee small numerical error \| u - U\| \scrE (\Omega ), we require a set of basis functions
that form a space for which \| u - \scrP u\| \scrE (\Omega ) is small.

The main difficulty of computing the elliptic equation with rough coefficient is
that a large number of basis functions are apparently needed. When a(x) is rough
with \varepsilon as its smallest scale, for standard piecewise affine finite elements, the mesh size
\Delta x needs to resolve the smallest scale, so that \Delta x\ll \varepsilon in each dimension. It follows
that the dimension n of the system (2.3) is n = \scrO (1/\varepsilon d) \gg 1, where d is the spatial
dimension. The large size of stiffness matrix \sansA and its large condition number (usually
on the order of \scrO (1/\varepsilon 2)) make the problem expensive to solve using this approach.

The question then is whether it is possible to design a Galerkin space for which
n is independent of \varepsilon . As mentioned in section 1, the offline-online procedure makes
this approach feasible, as we discuss next.

2.1. Generalized finite element method. The gFEM was one of the earli-
est methods to utilize the offline-online procedure. This approach is based on the
partition of unity. One first decomposes the domain \Omega into many small patches \omega i,
i = 1, 2, . . . ,m, that form an open cover of \Omega . Each patch \omega i is assigned a partition-
of-unity function \nu i that is zero outside \omega i and 1 over most of the set \omega i. Specifically,
there is a positive constant C such that

0 \leq \nu i(x) \leq 1 for all x \in \Omega and all i = 1, 2, . . . ,m,(2.5a)

\nu i(x) = 0 for all x \in \Omega \setminus \omega i and all i = 1, 2, . . . ,m,(2.5b)

max
x\in \Omega 

| \nabla \nu i(x)| \leq 
C

diam(\omega i)
for all i = 1, 2, . . . ,m.(2.5c)

Moreover, we have

(2.6)
m\sum 
i=1

\nu i(x) = 1 for all x \in \Omega .

In the offline step, basis functions \phi i,j , i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, are con-
structed for each patch \omega i, where ni is the number of basis functions in patch i. We
denote the numerical local solution space in patch \omega i by

(2.7) \Phi [i] = Span\{ \phi i,j , j = 1, 2, . . . , ni\} .
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RANDOMIZED SAMPLING FOR gFEM 1157

In the online step, the Galerkin formulation is used, with the space in (2.2) replaced
by

(2.8) \Phi :=
\bigoplus 

i=1,2,...,m

\Phi [i]\nu i = Span\{ \phi i,j\nu i, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni\} .

Details can be found in [2].
The total number of basis functions is

\sum m
i=1 ni. If all ni, i = 1, 2, . . . ,m, are

bounded by a modest constant, the dimension of the space \Phi is of order m, so the
computation in the online step is potentially inexpensive. It is proved in [2] that the
total approximation error is governed by the sum of all local approximation errors.

Theorem 2.1. Denote by u the solution to (2.1). Suppose \{ \omega i\} i=1,2,...,m forms
an open cover of \Omega , and let \{ \nu i\} i=1,2,...,m denote the set of partition-of-unity functions
defined in (2.5). If the solution can be approximated well by \zeta i \in \Phi [i] in each patch
\omega i, the global error is small too. Specifically, if we assume that

(2.9) \| u - \zeta i\| L2(\omega i) \leq \varepsilon 1(i) and \| u - \zeta i\| \scrE (\omega i) \leq \varepsilon 2(i) , i = 1, 2, . . . ,m,

and define

\zeta (x) =

m\sum 
i=1

\zeta i(x)\nu i(x) ,

then \zeta (x) \in H1(\Omega ), and for the constant C defined in (2.5), we have

\| u - \zeta \| L2(\Omega ) \leq max
i

\| \nu i\| \infty 

\Biggl( 
m\sum 
i=1

\varepsilon 21(i)

\Biggr) 1/2

and

\| u - \zeta \| \scrE (\Omega ) \leq C

\Biggl( 
m\sum 
i=1

\varepsilon 21(i)

diam2(\omega i)
+ max

i
\| \nu i\| 2\infty 

m\sum 
i=1

\varepsilon 22(i)

\Biggr) 1/2

.

This theorem shows that the approximation error of the Galerkin numerical solu-
tion for the gFEM depends directly on the accuracy of the local approximation spaces
in each patch.

2.2. Low rank local solution space. One reason for the success of gFEM is
that the local numerical solution space is approximately low rank, meaning that ni
has a modest value for all i in (2.7); see [1]. We review the relevant results in this
section, and show how to find \Phi [i].

Denote by \omega \ast 
i an enlargement of the patch \omega i, that is, a set for which \omega i \subset \omega \ast 

i \subset \Omega .
To simplify notation, we suppress subscripts i from here on. We introduce a restriction
operator:

P : Ha(\omega 
\ast )/R \rightarrow Ha(\omega )/R ,

where Ha(\omega 
\ast ) is the collection of all a-harmonic functions in \omega \ast and Ha(\omega 

\ast )/R rep-
resents the quotient space of Ha(\omega 

\ast ) with respect to the constant function. (This
modification is needed to make \| \cdot \| \scrE (\omega \ast ) a norm, since an a-harmonic function is de-
fined only up to an additive constant.) The operator P is determined uniquely by a(x)
restricted in \omega \ast and \omega . We denote its adjoint operator by P \ast : Ha(\omega )/R \rightarrow Ha(\omega 

\ast )/R.
It is shown in [1] that the operator P \ast P is a compact, self-adjoint, nonnegative oper-
ator on Ha(\omega 

\ast )/R.
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To derive an n-dimensional approximation of Ha(\omega 
\ast )/R, we define as follows the

Kolmogorov distance of an arbitrary n-dimensional function subspace Sn \subset Ha(\omega )/R
to Ha(\omega 

\ast )/R associated with their corresponding norms \| \cdot \| \scrE (\omega ) and \| \cdot \| \scrE (\omega \ast ), re-
spectively:

(2.10) d(Sn, Ha(\omega 
\ast )) = sup

u\in Ha(\omega 
\ast )/R ,

\| u\| \scrE (\omega \ast )\leq 1

inf
\xi \in Sn

\| Pu - \xi \| \scrE (\omega ) .

(We omit the norms from the arguments of d, since they are clear from the context.)
By considering all possible Sn, we can identify the optimal approximation space \Phi n

that achieves the infimum:

(2.11) \Phi n := arg inf
Sn

d(Sn, Ha(\omega 
\ast )) .

We now define a distance measure between \omega and \omega \ast as follows:

dn(\omega , \omega 
\ast ) = d(\Phi n, Ha(\omega 

\ast )) .

The term dn(\omega , \omega 
\ast ) is the celebrated Kolmogorov n-width of the compact operator

P . It reflects how quickly a-harmonic functions supported on \omega \ast lose their energies
when confined to \omega . According to [25], the optimal approximation space \Phi n and
Kolmogorov n-width can be found explicitly, in terms of the eigendecomposition of
P \ast P on \omega \ast , which is

(2.12) P \ast P\psi i = \lambda i\psi i , i = 1, 2, . . . ,

with \lambda i arranged in descending order and \{ \psi i, i = 1, 2, . . .\} the corresponding eigen-
vectors, which are automatically orthonormal according to \langle \cdot , \cdot \rangle \scrE (\omega \ast ). By defining

(2.13) \Psi n := Span\{ \psi 1, . . . , \psi n\} ,

the optimal approximation space is

(2.14) \Phi n := P\Psi n = Span\{ \phi 1, \phi 2, . . . , \phi n\} , with \phi i := P\psi i, i = 1, 2, . . . , n.

It follows from the definitions above that

(2.15) dn(\omega , \omega 
\ast ) =

\sqrt{} 
\lambda n+1 .

Note that \psi i are all supported in the enlarged domain \omega \ast , while \phi i are their confine-
ments in \omega . Almost-exponential decay of the Kolmogorov width with respect to n
was proved in [1, Theorem 3.3], according to the following result.

Theorem 2.2. The accuracy dn(\omega , \omega 
\ast ) has nearly exponential decay for n suffi-

ciently large: for any small \varepsilon > 0, we have

dn(\omega , \omega 
\ast ) \leq e - n(d+1) - 1 - \varepsilon 

.

It follows that for any function u that is an a-harmonic function in the patch \omega \ast \subset R2,
we can find a function v \in \Phi n for which

\| u - v\| \scrE (\omega ) \leq dn(\omega , \omega 
\ast )\| u\| \scrE (\omega \ast )\leq \sim e - n1/3 - \varepsilon .

D
ow

nl
oa

de
d 

08
/1

1/
20

 to
 7

5.
13

5.
86

.1
98

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED SAMPLING FOR gFEM 1159

Remark 1. Note that dn is the (n+ 1)th singular value
\sqrt{} 
\lambda n+1 of P . Because of

the fast decay of dn with respect to n indicated by Theorem 2.2, P is an approximately
low rank operator. It follows that almost all a-harmonic functions supported on \omega \ast ,
when confined in \omega , look almost alike, and can be represented by a relatively small
number of ``important"" modes.

Remark 2. We note that enlarging the domain for oversampling is a standard
approach: in [12], the boundary layer behavior confined in \omega \ast /\omega was studied and
utilized for computation.

2.3. Computing the local solution space. We describe here the computa-
tion of an approximation to \Phi n via discretized versions of the objects defined in the
previous subsection. More specifically, we discretize the enlarged patch \omega \ast with a
fine mesh, and collect all a-harmonic functions upon discretization. To collect all
a-harmonic functions, we would need to solve the system with elliptic operator (1.1)
locally, with all possible Dirichlet boundary conditions on \partial \omega \ast . For ease of presen-
tation, here and in what follows, we assume that we choose a piecewise-affine finite
element discretization of the patch for computing the local a-harmonic functions.
Then the discretized a-harmonic functions are determined by their values on grid
points \{ y1, y2, . . . , yNy\} on the boundary of \partial \omega \ast . We proceed in three stages.

Stage A. Construct the discrete a-harmonic function space Ha(\omega 
\ast ) on the fine

mesh via the functions \chi i obtained by solving the following system for i = 1, 2, . . . , Ny:

(2.16)

\Biggl\{ 
\scrL \chi i =  - div (a(x)\nabla \chi i) = 0 , x \in \omega \ast ,

\chi | \partial \omega \ast = \delta i , yi \in \partial \omega \ast ,

where \delta i is the hat function that peaks at yi and equals zero at other grid points yj ,
j \not = i. Recall that we have assumed a piecewise-affine finite element discretization of
\omega \ast .

Stage B. Compute the eigenvalue problem (2.12) in the space spanned by \{ \chi i , i =
1, 2, . . . , Ny\} . Noting that
(2.17)

\langle P \ast P\psi i , \delta \rangle \scrE (\omega \ast ) = \langle P\psi i , P \delta \rangle \scrE (\omega ) = \langle \psi i , \delta \rangle \scrE (\omega ) for all \delta \in Span\{ \chi 1, . . . , \chi Ny\} ,

the weak formulation of the eigenvalue problem (2.12), when confined in the discrete
a-harmonic function space, is given by

\langle \psi i , \chi \rangle \scrE (\omega ) = \lambda i\langle \psi i , \chi \rangle \scrE (\omega \ast ) for all \chi \in Span\{ \chi 1, . . . , \chi Ny
\} .

Expanding the eigenfunction \psi i in terms of \chi j , j = 1, 2, . . . , Ny, as

(2.18) \psi i =
\sum 
j

c
(i)
j \chi j ,

we obtain the following equation for the coefficient vector \vec{}c(i):\sum 
j

c
(i)
j \langle \chi j , \chi k\rangle \scrE (\omega ) = \lambda i

\sum 
j

c
(i)
j \langle \chi j , \chi k\rangle \scrE (\omega \ast ) .
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This system can be written as a generalized eigenvalue problem, as follows:

(2.19) \sansS \vec{}c(i) = \lambda i\sansS 
\ast \vec{}c(i) ,

with \sansS mn = \langle \chi m , \chi n\rangle \scrE (\omega ) and \sansS \ast mn = \langle \chi m , \chi n\rangle \scrE (\omega \ast ), m, n = 1, 2, . . . , Ny.
This generalized eigenvalue problem can be solved for \lambda i, i = 1, 2, . . . , Ny, ar-

ranged in descending order, and their associated eigenfunctions \psi i, i = 1, 2, . . . , Ny,
defined from (2.18) using the generalized eigenvectors \vec{}c(i) from (2.19). Choose index
n to satisfy \lambda n+1 < TOL < \lambda n, where TOL is a given error tolerance.

Stage C. Obtain \Phi n by substituting the functions \psi i, i = 1, 2, . . . , n, calculated
in Stage B, into (2.14).

3. Randomized sampling methods for local bases. In this section we pro-
pose a class of random sampling methods to construct local basis functions efficiently.
As seen in section 2.3, finding the optimal basis functions amounts to solving the
generalized eigenvalue problem in (2.19). The main cost comes not from performing
the eigenvalue decomposition, but rather from computing the a-harmonic functions
\chi i, which are used to construct the matrices \sansS and \sansS \ast in (2.19). As shown in sec-
tion 2.2, the eigenvalues decay almost exponentially, indicating that only a limited
number of local modes is needed to represent the whole solution space well. This low
rank structure motivates us to consider randomized sampling techniques.

Randomized algorithms have been highly successful in compressed sensing, where
they are used to extract low rank structure efficiently from data. The Johnson--
Lindenstrauss lemma [16] suggests that structure in high-dimensional data points is
largely preserved when projected onto random lower-dimensional spaces. The rSVD
algorithm uses this idea to capture the principal components of a large matrix by
random projection of its row and column spaces onto smaller subspaces; see [11] for a
review. In the current numerical PDE context, knowing that the local solution space
is essentially low rank, we seek to adopt the random sampling idea to generate local
approximate solution spaces efficiently.

Randomized SVD cannot be applied directly in our context, as we discuss in
section 3.3. We propose instead a method based on Galerkin approximation of the
generalized eigenvalue problem on a small subspace. One immediate difficulty is
that an arbitrarily given random function is not necessarily a-harmonic. Thus, our
method first generates a random collection of functions and projects them onto the
a-harmonic function space, and then solves the generalized eigenvalue problem (2.19)
on the subspace to find the optimal basis functions. A detailed description of our
approach is shown in Algorithm 1.

Note that the steps in Stage 2 of Algorithm 1 are parallel to those of section 2.3,
but only a small number of functions \gamma k are used in the generalized eigenvalue problem,
rather than the whole list of a-harmonic functions (i.e., Nr \ll Ny). We therefore save
significant computation in preparing the a-harmonic function space, in assembling the
\sansS and \sansS \ast matrices, and in solving the generalized eigenvalue decomposition.

The key is to use the random sampling strategy in Stage 1 of Algorithm 1 to
generate an effective small subspace for the generalized eigenvalue problem. This
aspect of the algorithm will be the focus of the rest of this section.

3.1. \bfita -harmonic projection. Let us first discuss the a-harmonic projection of
a given function \xi supported on \omega \ast . This problem can be formulated as a PDE-
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Algorithm 1. Determining optimal local bases.

Stage 1: Randomly generate a collection of Nr a-harmonic functions.
Stage 1-A: Randomly pick functions \{ \xi k : k = 1, 2, . . . , Nr\} supported on \omega \ast .
Stage 1-B: For each k = 1, 2, . . . , Nr, project \xi k onto the a-harmonic function
space to obtain \gamma k.

Stage 2: Solve the generalized eigenvalue problem to determine leading modes.
Stage 2-A: Define

(3.1) \sansS \gamma ,mn := \langle \gamma m , \gamma n\rangle \scrE (\omega ) , \sansS \ast \gamma ,mn := \langle \gamma m , \gamma n\rangle \scrE (\omega \ast ) , m, n = 1, 2, . . . , Nr,

and solve the associated generalized eigenvalue problem

(3.2) \sansS \gamma \vec{}v
\gamma = \lambda \gamma \sansS \ast \gamma \vec{}v

\gamma ,

with (\lambda \gamma j , \vec{}v
\gamma 
j ) denoting the jth eigenpairs, such that \lambda \gamma 1 \geq \lambda \gamma 2 \geq \cdot \cdot \cdot \geq \lambda \gamma Nr

\geq 0.
Stage 2-B: Choose n such that \lambda \gamma 1 \geq \cdot \cdot \cdot \geq \lambda \gamma n \geq TOL > \lambda \gamma n+1 (where TOL is a
preset tolerance), and collect the first n eigenfunctions to use as the local basis
functions:

(3.3) \Phi r
n = Span\{ \phi r1, \phi r2, . . . , \phi rn\} = Span\{ P\psi r

j , j = 1, 2, . . . , n\} ,

where \psi r
j =

\sum 
k \vec{}v

\gamma 
j,k\gamma k.

constrained optimization problem:

(3.4) min
\gamma 

1

2
\| \gamma  - \xi \| 2L2(\omega \ast ) subject to \scrL \gamma = 0 ,

where \scrL =  - div a\nabla is the elliptic operator defined in (2.1). The Lagrangian function
for (3.4) is as follows:

(3.5) F (\gamma , \mu ) :=
1

2
\| \gamma  - \xi \| 2L2(\omega \ast )  - \langle \mu ,\scrL \gamma \rangle L2(\omega \ast ) ,

where \mu is a Lagrange multiplier. In the discrete setting, we form a grid \{ xi\} over
\omega \ast and denote by \zeta i the hat function centered at grid point xi. (Recall that we have
assumed piecewise-affine finite element discretization.) The Lagrangian function for
the corresponding discretized optimization problem is

(3.6) F (\gamma , \mu ) =
1

2
(\gamma i  - \xi i)\top (\gamma i  - \xi i) - \mu \top \sansA ii\gamma i  - \mu \top \sansA ib\gamma b ,

where the superindices i and b stand for interior and boundary grids, respectively,
and \sansA is the stiffness matrix whose (m,n) element is

\sansA mn = \langle a\nabla \zeta m ,\nabla \zeta n\rangle L2(\omega \ast ) .

In the discrete setting, \mu is a vector of the same length as \gamma i (the number of grid points
in the interior). Note that in the translation to the discrete setting, we represent
\scrL \gamma = 0 by \sansA \gamma = 0, which leads to

\sansA ii\gamma i + \sansA ib\gamma b = 0 .
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Here \sansA ii is the stiffness matrix confined in the interior, and \sansA ib is the part of the
stiffness matrix generated by taking the inner product of the interior basis functions
and the boundary basis functions. To solve the minimization problem, we take the
partial derivatives of (3.6) with respect to \gamma and \mu and set them equal to zero, as
follows:

\nabla \gamma iF = \gamma i  - \xi i  - \sansA ii\top \mu = 0 ,

\nabla \gamma bF = \sansA ib\top \mu = 0 ,

\nabla \mu F = \sansA ii\gamma i + \sansA ib\gamma b = 0 .

Some manipulation yields the following systems for \gamma b and \gamma i:

\sansA ib\top \bigl( \sansA ii
\bigr)  - 2

\sansA ib\gamma b =  - \sansA ib\top \bigl( \sansA ii
\bigr)  - 1

\xi i, \gamma i =  - 
\bigl( 
\sansA ii
\bigr)  - 1

\sansA ib\gamma b .

The solution to this system gives the solution of (3.4) in the discrete setting. Recall
that \gamma b is a vector containing only the boundary conditions for the solution, and

thus the computation is rather cheap, given that the matrix \sansA ib\top \bigl( \sansA ii
\bigr)  - 2

\sansA ib can be
prepared ahead of time. Computing \gamma i using \gamma b amounts to numerically solving a
finite element problem confined in a small domain \omega \ast , and thus the numerical cost is
the same as preparing an a-harmonic function.

3.2. Random sampling strategies. We have many possible choices for the
random functions \xi k, k = 1, 2, . . . , Nr, in Stage 1-A of Algorithm 1. Here we list
several natural choices.

1. Interior \delta -function. Choose a random grid point in \omega , and set \xi (x) = 1 at
this grid point and zero at all other grid points. That is, \xi is the hat function
associated with the grid point x.

2. Interior independent and identically distributed (i.i.d.) function. Choose the
value of \xi at each grid point in \omega independently from a standard normal
Gaussian distribution. The values of \xi at grid points in \omega \ast \setminus \omega are set to 0.

3. Full-domain i.i.d. function. This choice is the same as in strategy 2, except
that the values of \xi at the grid points in \omega \ast \setminus \omega are also chosen as Gaussian
random variables.

4. Random Gaussian. Choose a random grid point x0 \in \omega , and set \xi (x) =

e - 
(x - x0)2

2 at all grid points x \in \omega \ast .
We aim to select basis functions (through Stage 2) that are associated with the largest
eigenvalues, so that the Kolmogorov n-width can be small (2.15). Thus, we hope that
in Stage 1, the chosen functions \xi k provide large eigenvalues \lambda i in (2.19). A large
value of \lambda indicates that a large portion of the energy is maintained in \omega , with only
a small amount coming from the buffer region \omega \ast \setminus \omega . It therefore suggests choosing
functions \xi k with most of their variations inside \omega . However, the projection onto an
a-harmonic space step makes the locality of the resulting functions hard to predict.
In section 4, we propose and analyze a criterion for the performance of the random
sampling schemes. In particular, we compare the four choices listed above.

We mention here that a list of a-harmonic functions could be obtained through a
different route: one can prepare boundary conditions and compute local a-harmonic
functions inside \omega \ast with the preassigned boundary. There are various ways to prepare
boundary conditions, including the following.

5. Random i.i.d. boundary sampling. In [5], the authors proposed to obtain a
list of random a-harmonic functions by computing the local elliptic equation
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with i.i.d. random Dirichlet boundary conditions. Assuming there are Ny

grid points on the boundary \partial \omega \ast , we define g to be a vector of length Ny

with i.i.d. random variables for each component. We then define \gamma by solving

(3.7)

\Biggl\{ 
\scrL \gamma = 0 , x \in \omega \ast ,

\gamma | \partial \omega \ast = g.

This process is repeated Nr times to obtain a set of Nr random a-harmonic
functions \{ \gamma k : k = 1, 2, . . . , Nr\} .

6. Randomized boundary sampling with exponential covariance. A technique in
which the Dirichlet boundary conditions are chosen to be random Gaussian
variables with a specified covariance matrix is described in [18]. This matrix
is assumed to be an exponential function, that is,

(3.8) Cov(yi, yj) = exp( - | yi  - yj | /\sigma ) .

The first few modes of a Karhunen--Lo\'eve expansion are used to construct a
boundary condition in (3.7), with which basis functions are computed. Al-
though a justification for this approach is not provided, numerical computa-
tions show that it is more efficient than the i.i.d. random boundary sampling.

7. Smooth Boundary sampling. Since i.i.d. random Dirichlet boundary condi-
tions typically yield solutions that oscillate a lot near the boundary, they
have sharp boundary layers. To eliminate this effect, one can use a Gaussian
kernel to smooth out the boundary profile. In particular, the i.i.d. random
sample can be convolved with a Gaussian function 1\surd 

2\pi \sigma 
e - x2/2\sigma 2

to obtain a

smoother boundary condition.
We note that strategies 5 and 6 above were proposed in [5] and [18], respectively.
However, in [5], the postprocessing for basis selection was conducted using the gener-
alized eigenvalue problem of the stiffness and mass matrix instead of (2.12), and thus
there is no guarantee in the exponential decay.

3.3. Connection with randomized SVD. We briefly address the connection
between the random sampling method we propose in this paper and the well-known
randomized SVD (rSVD) algorithm. Although rSVD cannot be used directly in our
problem, it serves as a motivation for our randomized sampling strategies.

The rSVD algorithm, studied thoroughly in [11], speeds up the computation of
the SVD of a matrix when the matrix is large and approximately low rank. With
high probability, the singular vector structure is largely preserved when the matrix is
projected onto a random subspace. Specifically, for a random matrix \sansR with a small
number of columns (the number depending on the rank of \sansA ), it is proved in [11] that
if we obtain \sansQ from the QR factorization of \sansA \sansR , we have

(3.9) \| \sansA  - \sansQ \sansQ \top \sansA \| 2 \ll \| \sansA \| 2 .

This bound implies that any vector in the range space of \sansA can be well approximated
by its projection onto the space spanned by \sansQ . For example, if \vec{}u = \sansA \vec{}v, we have from
(3.9) that

(3.10) \| \vec{}u - \sansQ \sansQ \top \vec{}u\| \ll \| \vec{}u\| .

We note that \sansQ and \sansA \sansR span the same column space, but \sansQ is easier to work with
and better conditioned, because its columns are orthonormal. Equivalent to (3.10),
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we can also say that any \vec{}u in the image of \sansA can be approximated well using a linear
combination of the columns of \sansA \sansR .

To see the connection between rSVD and our problem, we first write the general-
ized eigenvalue problem (2.19) in an SVD form. Recall the definitions (3.1) of \sansS and
\sansS \ast ,

\sansS mn =

\int 
\omega 

a(x)\nabla \chi m(x) \cdot \nabla \chi n(x)dx , \sansS \ast mn =

\int 
\omega \ast 
a(x)\nabla \chi m(x) \cdot \nabla \chi n(x)dx ,

and define

(3.11) \Phi \ast =
\bigl[ \surd 
a\nabla \chi 1,

\surd 
a\nabla \chi 2, . . . ,

\surd 
a\nabla \chi Ny

\bigr] 
, \Phi = \Phi \ast | \omega .

Since \sansS = \Phi \top \Phi and \sansS \ast = \Phi \ast \top \Phi \ast , the generalized eigenvalue problem (2.19) can be
written as follows:

(3.12) \Phi \top \Phi \vec{}c = \lambda \Phi \ast \top \Phi \ast \vec{}c .

We write the QR factorization for \Phi \ast as

\Phi \ast = \sansQ \Phi \ast \sansR \Phi \ast ,

and denote \vec{}d = \sansR \Phi \ast \vec{}c. By substituting into (3.12), we obtain\bigl( 
\Phi \sansR  - 1

\Phi \ast 

\bigr) \top \bigl( 
\Phi \sansR  - 1

\Phi \ast 

\bigr) 
\vec{}d = \lambda \vec{}d ,

meaning that (
\surd 
\lambda , \vec{}d) forms a singular value pair of the matrix \Phi R - 1

\Phi \ast .
According to the rSVD argument, the leading singular vectors of \Phi \sansR  - 1

\Phi \ast are cap-
tured by those of

(3.13) \Phi \sansR  - 1
\Phi \ast \sansR ,

where \sansR is a matrix whose entries are i.i.d. Gaussian random variables. Specifically,
with high probability, the leading singular values of \Phi \sansR  - 1

\Phi \ast \sansR are almost the same as
those of \Phi \sansR  - 1

\Phi \ast , and the column space spanned by (3.13) largely covers the image of
\Phi \sansR  - 1

\Phi \ast , as in (3.11).
We now interpret \Phi \sansR  - 1

\Phi \ast \sansR from the viewpoint of PDEs. Decomposing \sansR  - 1
\Phi \ast \sansR into

columns as

(3.14) \sansR  - 1
\Phi \ast \sansR = [r1, r2, . . . ] , with rk = [rk1, rk2, . . . ]

\top ,

and denoting \gamma k =
\sum 

j rkj\chi j , we have from (3.11) that

\Phi rk =
\surd 
a\nabla 
\biggl( \sum 

j

rkj\chi j

\biggr) 
.
=

\surd 
a\nabla \gamma k .

Numerically, this corresponds to solving the following system for \gamma k:

(3.15)

\Biggl\{ 
\scrL \gamma k =  - div (a(x)\nabla \gamma k) = 0 , x \in \omega \ast ,

\gamma k| \partial \omega \ast =
\sum 

j rkj\delta yj
.

It is apparent from this equation that to obtain \Phi \sansR  - 1
\Phi \ast \sansR , we do not need to compute all

functions \chi j , j = 1, 2, . . . , Ny, and use them to construct \gamma k. Rather, we can compute
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\gamma k directly by solving the elliptic equation with random boundary conditions given
by rkj , j = 1, 2, . . . , Ny. The cost of this procedure is proportional to Nr, which is
much less than Ny.

Unfortunately, this procedure is difficult to implement in a manner that accords
with the rSVD theory. \sansR is constructed using i.i.d. Gaussian random variables, but
\sansR  - 1
\Phi \ast is unknown ahead of time, so the distribution of rk defined in (3.14) is un-

known. The theory here suggests that there exists some random sampling strategy
that achieves the accuracy and efficiency that characterize rSVD, but it does not
provide such a strategy.

4. Efficiency of various random sampling methods. As discussed in sec-
tion 3, given multiple ways to choose the random samples in Stage 1 of Algorithm 1,
it is natural to ask which one is better, and how to predetermine the approximation
accuracy. We answer these questions in this section.

The key requirement is that Algorithm 1 should capture the high-energy modes
of (2.12), the modes that correspond to the highest values of \lambda i. We start with a
simple example in section 4.1 that finds the relationship between the energy captured
by a certain single mode, and the angle that this mode makes with the highest energy
mode. The argument used can be easily applied to the case with multiple modes,
and the link towards the Kolmogorov distance will be shown in section 4.2. We will
discuss the situation in the general setting with plain linear algebra, and its relevance
to local PDE basis construction is outlined in section 4.3.

4.1. A one-mode example. Suppose we are working in a three-dimensional
space, with symmetric positive definite matrices \sansA and \sansB and generalized eigenvectors
x1, x2, and x3 such that

(4.1) \langle xi , xj\rangle \sansB = x\top i \sansB xi = \delta ij , \langle xi , xj\rangle \sansA = x\top i \sansA xi = \delta ij\lambda i

for generalized eigenvalues \lambda 1 > \lambda 2 > \lambda 3. We thus have

\sansA xi = \lambda i\sansB xi, i = 1, 2, 3.

Suppose we have some one-dimensional space \scrX spanned by a vector x, and we
intend to use it as an approximation of the space \scrX 1 spanned by the leading eigenvector
x1. The energy of \scrX is

(4.2) E(\scrX ) =
x\top \sansA x

x\top \sansB x
,

and the angle between the spaces \scrX and \scrX 1 is defined by

(4.3) d(\scrX ,\scrX 1) = max
| \beta | \leq 1

min
\alpha 

\| \alpha x - \beta x1\| \sansA .

We have the following result (which generalizes easily to dimension greater than 3).

Proposition 1. The angle (4.3) is bounded in terms of the energy (4.2) as fol-
lows:

(4.4) d(\scrX ,\scrX 1) \leq 

\sqrt{} 
\lambda 1\lambda 2 (\lambda 1  - E(\scrX ))

(\lambda 1  - \lambda 2)E(\scrX )
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Proof. The proof is simple algebra. As \{ x1, x2, x3\} span the entire space and are
\sansB -orthogonal, we have

(4.5) x = w1x1 + w2x2 + w3x3 ,

with wi = x\top \sansB xi, i = 1, 2, 3. According to the definition of the angle, one can
reduce the problem by setting \beta = 1 and

\sum 
i w

2
i = 1, so that \| x\| \sansB = 1 in (4.3).

(With these normalizations, we have from (4.1) and (4.2) that E(\scrX ) = xTAx =
\lambda 1w

2
1 + \lambda 2w

2
2 + \lambda 3w

2
3.) We thus have

d(\scrX ,\scrX 1)
2 = min

\alpha 
\| \alpha x - x1\| 2\sansA 

= min
\alpha 

\| (\alpha w1  - 1)x1 + \alpha w2x2 + \alpha w3x3\| 2\sansA 

= min
\alpha 

\bigl( 
(\alpha w1  - 1)2\lambda 1 + \alpha 2w2

2\lambda 2 + \alpha 2w2
3\lambda 3
\bigr) 
.

The minimum is achieved at \alpha = w1\lambda 1/E(\scrX ), with the minimized angle being

(4.6) (\angle (x, x1))
2
=
E(\scrX ) - w2

1\lambda 1
E(\scrX )

\lambda 1 .

To bound the numerator in (4.6) we observe that

E(\scrX ) - w2
1\lambda 1 = w2

2\lambda 2 + w2
3\lambda 3 \leq w2

2\lambda 2 + w2
3\lambda 2 = (1 - w2

1)\lambda 2,

and moreover,

E(\scrX ) \leq w2
1\lambda 1+(1 - w2

1)\lambda 2 \Rightarrow \lambda 1 - E(\scrX ) \geq (1 - w2
1)(\lambda 1 - \lambda 2) \Rightarrow 1 - w2

1 \leq \lambda 1  - E(\scrX )

\lambda 1  - \lambda 2
.

By combining these last two bounds, we obtain

E(\scrX ) - w2
1\lambda 1 \leq \lambda 2

\lambda 1  - E(\scrX )

\lambda 1  - \lambda 2
.

By substituting this bound into (4.6), we obtain (4.4).

Note that the bound (4.4) decreases to zero as \lambda 1  - E(\scrX ) \downarrow 0.
According to (4.4), a larger gap in the spectrum between \lambda 1 and \lambda 2 yields a tighter

bound, thus better control over the angle. The theorem indicates that the ``energy""
is the quantity that measures how well the randomly given vector x captures the first
mode, and thus serves as the criterion for the quality of the approximation.

4.2. Higher-dimensional criteria. In this section, we seek the counterpart in
higher-dimensional space of the previous result. Suppose now that the two symmetric
positive definite matrices \sansA and \sansB are n\times n, and their generalized eigenpairs (\lambda i, xi)
satisfy the conditions

(4.7) \langle xi , xj\rangle \sansB = \delta ij , \langle xi , xj\rangle \sansA = \delta ij\lambda i ,

so that
\sansA xi = \lambda i\sansB xi , with \lambda 1 \geq \cdot \cdot \cdot \geq \lambda k > \lambda k+1 \geq \cdot \cdot \cdot \geq \lambda n > 0 ,

that is,

(4.8) \sansA \sansX = \sansB \sansX \Lambda , with \Lambda = diag(\lambda 1, \lambda 2, . . . , \lambda n) .
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RANDOMIZED SAMPLING FOR gFEM 1167

Suppose we are trying to recover the optimal k-dimensional space \scrX h := Span\{ \sansX h\} ,
where \sansX h = [x1, x2, . . . , xk] collects the first k eigenfunctions. Define \scrX l := Span\{ \sansX l\} ,
where \sansX l = [xk+1, . . . , xn] collects the remaining modes. Denoting by \scrY our proposed
approximation space to \scrX h, we seek a quantity that measures how well the proposal
space \scrY approximates the optimal space \scrX h. In particular, we will show below that
the ``angle"" between the proposal \scrY and the to-be-recovered space \scrX h relies on the
``energy"" of \scrY .

Definition 4.1 (energy of a space \scrZ ). For any given k-dimensional space \scrZ ,
define \sansZ \in Rn\times k to be a matrix whose columns form a \sansB -orthonormal basis of \scrZ 
(obtained through performing Gram--Schmidt orthogonalization with \sansB -inner product).
Then the energy of \scrZ is defined as

(4.9) E(\scrZ ) :=
Tr(\sansZ \top \sansA \sansZ )

Tr(\sansZ \top \sansB \sansZ )
.

We note that this is a natural extension of energy defined in (4.2), and it is well
defined in the sense that the energy term (4.9) depends solely on the space \scrZ rather
than on the basis \sansZ , as shown in Appendix B.

We now generalize the angle (4.3) and define the Kolmogorov distance from space
\scrY to the optimal space \scrX h, with norms \| \cdot \| \sansA and \| \cdot \| \sansB , respectively.

Definition 4.2 (angle between spaces). Define the Kolmogorov distance from \scrY 
to the optimal subspace \scrX h as follows:

(4.10) d(\scrY ,\scrX h) = sup
z\in \scrX h,
\| z\| \sansB \leq 1

inf
y\in \scrY 

\| z  - y\| \sansA .

Notice that d(\scrY ,\scrX h) is a discrete version of (2.10), so we don't have operator P
in (4.10) since it is implicit in the norm \| \cdot \| \sansA .

Similarly to the previous section, we show that E(\scrY ) is related to d(\scrY ,\scrX h).
In Definition 4.1 the energy E(\scrZ ) is defined for a \sansB -orthonormal basis \sansZ , and for
consistency we assume that \sansY \in Rn\times k collects a \sansB -orthonormal basis of space \scrY .

Since \sansX spans the entire space, we can express \sansY as follows:

(4.11) \sansY = \sansX \sansC = \sansX h\sansC h + \sansX l\sansC l,

where \sansC \in Rn\times k. The columns of \sansC are orthonormal because from (4.7) and the
definition of \sansY , we have

(4.12) \sansY = \sansX \sansC \Rightarrow 1 = \sansY \top \sansB \sansY = \sansC \top \sansX \top \sansB \sansX \sansC = \sansC \top \sansC .

We denote by \sansC h the upper Rk\times k portion of \sansC , and by \sansC l the lower R(n - k)\times k portion.
Denoting the elements of \sansC by cji, we have

(4.13) \sansC h = [cji]j=1,2,...,k; i=1,2,...,k, \sansC l = [cji]j=k+1,k+2,...,n; i=1,2,...,k.

By orthonormality of \sansC , it follows that

k\sum 
j=1

c2ji +
n\sum 

j=k+1

c2ji = 1, i = 1, 2, . . . , k,

and thus

(4.14)
\bigl[ 
Cl\top Cl

\bigr] 
ii
= 1 - 

\bigl[ 
Ch\top Ch

\bigr] 
ii
= 1 - 

k\sum 
j=1

c2ji, i = 1, 2, . . . , k.
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1168 K. CHEN, Q. LI, J. LU, AND S. J. WRIGHT

Lemma 4.1. The trace of \sansC l\top \sansC l is bounded by the energy difference between the
optimal space \scrX h and the proposed space \scrY :

(4.15) Tr(\sansC l\top \sansC l) \leq 
k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
\lambda k  - \lambda k+1

.

Furthermore, \sansC h is invertible if

(4.16) E(\scrX h) - E(\scrY ) <
\lambda k  - \lambda k+1

k
.

Proof. We have from (4.12) that

(4.17) \sansC h\top \sansC h + \sansC l\top \sansC l = 1 .

Since both \sansX h and \sansY are \sansB -orthonormal and have k columns, we have

Tr
\bigl( 
\sansX h\top \sansB \sansX h

\bigr) 
= Tr

\bigl( 
\sansY \top \sansB \sansY 

\bigr) 
= k .

By substituting \sansX h and \sansY into the definition of energy (4.9), we have

k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
= Tr

\bigl( 
\sansX h\top \sansA \sansX h  - \sansY \top \sansA \sansY 

\bigr) 
.

By substituting for \sansY from (4.11), and using (4.7), we have

(4.18)
k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
= Tr

\bigl( 
\sansX h\top \sansA \sansX h  - \sansC h\top \sansX h\top \sansA \sansX h\sansC h  - \sansC l\top \sansX l\top \sansA \sansX l\sansC l

\bigr) 
= Tr

\bigl( 
\Lambda h  - \sansC h\top \Lambda h\sansC h  - \sansC l\top \Lambda l\sansC l

\bigr) 
,

where \Lambda h := diag(\lambda 1, \lambda 2, . . . , \lambda k) and \Lambda l := diag(\lambda k+1, \lambda k+2, . . . , \lambda n). For the terms
on the right-hand side of (4.18), we have that

(4.19) Tr
\bigl( 
\sansC l\top \Lambda l\sansC l

\bigr) 
\leq \lambda k+1 Tr

\bigl( 
\sansC l\top \sansC l

\bigr) 
,

and that

Tr
\bigl( 
\Lambda h  - \sansC h\top \Lambda h\sansC h

\bigr) 
=

k\sum 
j=1

\lambda j  - 
k\sum 

i=1

k\sum 
j=1

\lambda jc
2
ji

=
k\sum 

j=1

\lambda j

\Biggl( 
1 - 

k\sum 
i=1

c2ji

\Biggr) 

\geq \lambda k

k\sum 
j=1

\Biggl( 
1 - 

k\sum 
i=1

c2ji

\Biggr) 
= \lambda k Tr

\bigl( 
\sansC l\top \sansC l

\bigr) 
,(4.20)

where we used (4.14). By substituting (4.19) and (4.20) into (4.18), we obtain

k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
\geq (\lambda k  - \lambda k+1) Tr

\bigl( 
\sansC l\top \sansC l

\bigr) 
,

which is equivalent to (4.15).
When condition (4.16) holds, we have from (4.15) that Tr(\sansC l\top \sansC l) < 1. Thus since

\sansC h\top \sansC h = 1  - \sansC l\top \sansC l, and setting \| \sansC l\top \sansC l\| \leq Tr(\sansC l\top \sansC l) < 1, we have that \sansC h\top \sansC h is
nonsingular, so that the k \times k matrix \sansC h is nonsingular.
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We finally use energy distance E(\scrX h) - E(\scrY ) to estimate the Kolmogorov distance
d(\scrY ,\scrX h) as follows.

Theorem 4.1. Considering the optimal space \scrX h and the proposed space \scrY , if

(4.21) E(\scrX h) - E(\scrY ) \leq \lambda k  - \lambda k+1

2k
,

then we have

(4.22) d(\scrY ,\scrX h) \leq 

\sqrt{} 
\lambda k+1

\| \sansC l\top \sansC l\| 
1 - \| \sansC l\top \sansC l\| 

,

and furthermore,

(4.23) d(\scrY ,\scrX h) \leq 

\sqrt{} 
2\lambda k+1

k (E(\scrX h) - E(\scrY ))

\lambda k  - \lambda k+1
.

Proof. Choosing an arbitrary z = \sansX h\alpha with \| \alpha \| \leq 1, we look for \beta such that
y = \sansY \beta is closest to z in the \sansA -norm. The solution, obtained from the minimization
problem

(4.24) min
\beta 
f\alpha (\beta ) := \| y  - z\| 2\sansA = (\sansY \beta  - \sansX h\alpha )\top \sansA (\sansY \beta  - \sansX h\alpha ) ,

is

(4.25) \beta \ast 
\alpha = (\sansY \top \sansA \sansY ) - 1\sansY \top \sansA \sansX h\alpha .

Note from the definition (4.10) that

(4.26) d(\scrY ,\scrX h) = sup
\| \alpha \| \leq 1

\sqrt{} 
f\alpha (\beta \ast 

\alpha ).

From (4.7) and (4.11), we have

(4.27) \sansY \top \sansA \sansY = \sansC \top \Lambda \sansC = \sansC h\top \Lambda h\sansC h + \sansC l\top \Lambda l\sansC l,

which is invertible, since \sansC has orthonormal columns and \Lambda is diagonal and positive
definite. Thus \beta \ast 

\alpha is well defined by (4.25). By substituting (4.25) into (4.24), we
obtain

(4.28) f\alpha (\beta 
\ast 
\alpha ) =  - \alpha \top (\sansY \top \sansA \sansX h)\top (\sansY \top \sansA \sansY ) - 1(\sansY \top \sansA \sansX h)\alpha + \alpha \top \sansX h\top \sansA \sansX h\alpha .

Note from (4.11) and (4.8) that

\sansA \sansY = \sansA \sansX h\sansC h + \sansA \sansX l\sansC l = \sansB \sansX h\Lambda h\sansC h + \sansB \sansX l\Lambda l\sansC l,

so from (4.7), we have

\sansX h\top \sansA \sansY = (\sansX h\top \sansB \sansX h)\Lambda h\sansC h + (\sansX h\top \sansB \sansX l)\Lambda l\sansC l = \Lambda h\sansC h.

By substituting this equality together with (4.27) into (4.28), and using (4.7) again,
we have

(4.29) f\alpha (\beta 
\ast 
\alpha ) =  - \alpha \top (\Lambda h\sansC h)(\sansC h\top \Lambda h\sansC h + \sansC l\top \Lambda l\sansC l) - 1(\Lambda h\sansC h)\top \alpha + \alpha \top \Lambda h\alpha .
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Invertibility of \sansC h follows from Lemma 4.1 and the condition (4.21), so that (\Lambda h)1/2\sansC h

is invertible, and we can transform (4.29) to
(4.30)

f\alpha (\beta 
\ast 
\alpha ) =  - \alpha \top (\Lambda h)1/2

\Bigl[ 
1+ (\sansC h\top (\Lambda h)1/2) - 1\sansC l\top \Lambda l\sansC l((\Lambda h)1/2\sansC h) - 1

\Bigr]  - 1

(\Lambda h)1/2\alpha +\alpha T\Lambda h\alpha .

For any matrix \sansA with (1+ \sansA ) nonsingular, we have that

(4.31) (1+ \sansA ) - 1 = 1 - \sansA + (1+ \sansA ) - 1\sansA 2.

Moreover, if \sansA is symmetric positive semidefinite, then the last term (1 + \sansA ) - 1\sansA 2 is
symmetric positive semidefinite, since if we write the eigenvalue decomposition of \sansA 
as \sansA = \sansU \sansS \sansU \top , where \sansU is orthogonal and \sansS is nonnegative diagonal, we have that
(1+\sansA ) - 1\sansA 2 = \sansA 2(1+\sansA ) - 1 = \sansU (1+ \sansS ) - 1\sansS 2\sansU \top . Thus for any vector z, we have from
(4.31) that

 - z\top (1+ \sansA ) - 1z + zT z \leq  - zT (1 - \sansA )z + zT z = zT\sansA z.

By substituting \sansA = (\sansC h\top (\Lambda h)1/2) - 1\sansC l\top \Lambda l\sansC l((\Lambda h)1/2\sansC h) - 1 and z = (\Lambda h)1/2\alpha into
this expression, we have from (4.30) that

f\alpha (\beta 
\ast 
\alpha ) \leq \alpha \top (\Lambda h)1/2(\sansC h\top (\Lambda h)1/2) - 1\sansC l\top \Lambda l\sansC l((\Lambda h)1/2\sansC h) - 1(\Lambda h)1/2\alpha 

= \alpha \top (\sansC h) - \top \sansC l\top \Lambda l\sansC l(\sansC h) - 1\alpha 

\leq \| \alpha \| 2\| (\sansC h\top \sansC h) - 1\| \| \sansC l\top \Lambda l\sansC l\| .(4.32)

Note that \| \alpha \| \leq 1, \| \sansC l\top \Lambda l\sansC l\| \leq \lambda k+1\| \sansC l\top \sansC l\| , and

\bigm\| \bigm\| (\sansC h\top \sansC h) - 1
\bigm\| \bigm\| =

\bigm\| \bigm\| (1 - \sansC l\top \sansC l) - 1
\bigm\| \bigm\| \leq 

\infty \sum 
i=0

\bigm\| \bigm\| \sansC l\top \sansC l
\bigm\| \bigm\| i = 1

1 - \| \sansC l\top \sansC \| 
,

so by substituting into (4.32), we have

(4.33) f\alpha (\beta 
\ast 
\alpha ) \leq \lambda k+1

\| \sansC l\top \sansC l\| 
1 - \| \sansC l\top \sansC l\| 

for all \alpha with \| \alpha \| \leq 1,

which because of (4.26) yields (4.22).
Under condition (4.21) we have from Lemma 4.1 that

\| \sansC l\top \sansC \| \leq Tr(\sansC l\top \sansC ) \leq 
k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
\lambda k  - \lambda k+1

\leq 1

2
,

so that
\| \sansC l\top \sansC l\| 

1 - \| \sansC l\top \sansC l\| 
\leq 2\| \sansC l\top \sansC l\| \leq 2

k
\bigl( 
E(\scrX h) - E(\scrY )

\bigr) 
\lambda k  - \lambda k+1

,

yielding (4.23).

4.3. Criteria used in random sampling for local basis functions. In our
local basis construction problem, we identify \sansA and \sansB in section 4.2 with \sansS and \sansS \ast ,
respectively, from (2.19). An energy term is constructed similarly.

Definition 4.3 (energy of a function space). Given the function space \Gamma n, let
\{ \~\gamma 1, \~\gamma 2, . . . , \~\gamma n\} be an \scrE (\omega \ast )-orthonormal basis for \Gamma n. The energy of \Gamma n is defined by

(4.34) E(\Gamma n) :=

\sum n
i=1\langle a(x)| \nabla x\~\gamma i| 2\rangle \scrE (\omega )\sum n
i=1\langle a(x)| \nabla x\~\gamma i| 2\rangle \scrE (\omega \ast )

.
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According to Theorem 4.1, a larger value of E indicates a smaller angle to the
optimal basis set, and thus a better sampling strategy.

Theorem 4.1 suggests that a sampling strategy that provides a matrix \sansY of dis-
cretized basis functions with higher energy E(\scrY ) (closer to the optimal value of
E(\scrX h)) will result in a smaller Kolmogorov distance, and thus a better approximation
to the optimal space \scrX h. Larger values of E are achieved when the samples have their
energies largely supported in the interior. This further suggests that construction of
a-harmonic functions through random sampling of singular boundary conditions may
not be the best strategy, because the boundary layer close to \omega \ast quickly damps out
the solution and the energies concentrated in the margin \omega \ast \setminus \omega , leading to relatively
small energy in the interior and a smaller value of E in (4.34). These observations
are borne out by the numerical experiments reported in the next section. Sampling
strategies that avoid boundary layers are thereby preferred, which suggests that Ran-
dom Gaussian (strategy 4) and random Smooth Boundary sampling (strategy 7) are
likely to give better results. Our computational results support this claim.

We note that enlarging oversampling size is another efficient way of getting rid of
boundary layers, but that generally leads to a smaller energy value in (4.34).

Theorem 4.2. In a two-dimensional space, for any small \varepsilon > 0 and n sufficiently
large, given any u \in Ha(\omega 

\ast )/R and a subspace \Gamma n = Span\{ \gamma 1, \gamma 2, . . . , \gamma n\} spanned by
random samples of a-harmonic functions, the accuracy of approximating u with a
function \gamma from \Gamma n is bounded by the following estimate:

min
\gamma \in \Gamma n

\| u - \gamma \| \scrE (\omega ) \leq \| u\| \scrE (\omega \ast )

\Bigl( 
e - n1/3 - \varepsilon 

+ d(\Gamma n,\Psi n)
\Bigr) 
,

where \Psi n is defined in (2.13) and d(\Gamma n,\Psi n) is defined in (4.10).

Proof. Without loss of generality, we assume \| u\| \scrE (\omega \ast ) = 1. Consider the optimal
basis \{ \psi i\} \infty i=1 \subset Ha(\omega 

\ast )/R computed in (2.12), for which we have

\langle \psi i, \psi j\rangle \scrE (\omega \ast ) = \delta ij , \langle \psi i, \psi j\rangle \scrE (\omega ) = \lambda i\delta ij .

We therefore have scalars u1, u2, . . . such that

u =
\infty \sum 
i=1

ui\psi i,
\infty \sum 
i=1

u2i = 1 .

Defining \~u \in Ha(\omega 
\ast )/R by

\~u =
n\sum 

i=1

ui\psi i ,

the restriction v = P \~u \in Ha(\omega )/R has

\| u - v\| \scrE (\omega ) = \| u - P \~u\| \scrE (\omega ) =

\biggl( \infty \sum 
i=n+1

u2i\lambda i

\biggr) 1/2

.

By the definition (4.10) of Kolmogorov distance, there exists \gamma \in \Gamma n such that

\| v  - \gamma \| \scrE (\omega ) \leq \| \~u\| \scrE (\omega \ast )d(\Gamma n,\Psi n) ,

where \Psi n := Span\{ \psi 1, . . . , \psi n\} as in (2.13). We further note that

\| \~u\| \scrE (\omega \ast ) =

\biggl( n\sum 
i=1

u2i

\biggr) 1/2

,
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and therefore

\| u - \gamma \| \scrE (\omega ) \leq \| u - v\| \scrE (\omega ) + \| v  - \gamma \| \scrE (\omega )

\leq 
\biggl( \infty \sum 

i=n+1

u2i\lambda i

\biggr) 1/2

+

\biggl( n\sum 
i=1

u2i

\biggr) 1/2

d(\Gamma n,\Psi n)

\leq (\lambda n+1)
1/2 + d(\Gamma n,\Psi n)

\leq e - n1/3 - \varepsilon 

+ d(\Gamma n,\Psi n) ,

where the last inequality comes from Theorem 2.2.

5. Computational results. We present numerical results in this section that
show how the Kolmogorov distance of the random sampling subspace to the optimal
space decreases with the number of basis functions, for different sampling strategies.
Throughout this section, the domain \omega and enlarged domain \omega \ast are defined by

\omega = [ - 1, 1]\times [ - 1, 1], \omega \ast = [ - 1.4, 1.4]\times [ - 1.4, 1.4].

The medium a(x, y) is defined to be

(5.1) a(x, y) =
1

5

\biggl( 
1.1 + sin(7\pi x)

1.1 + sin(7\pi y)
+

1.1 + sin(9\pi y)

1.1 + cos(9\pi x)
+

1.1 + cos(13\pi y)

1.1 + cos(13\pi x)

+
1.1 + cos(9\pi x)

1.1 + sin(9\pi y)
+

1.1 + sin(7\pi y)

1.1 + sin(7\pi x)

\biggr) 
, (x, y) \in \omega \ast .

Numerical results will be shown for discretization parameters dx = dy = 1/40.
The reference solution is obtained from the procedure summarized in section 2.3.

To find the optimal solution space, we prepare the entire a-harmonic function space
by going through all possible boundary condition configurations, before computing
the general eigenvalue problem (2.19) for basis selection. This process requires com-
putation of the elliptic equation (2.16) 444 times (each time with a hat function on
the boundary of \partial \omega \ast concentrated at a specific grid point), followed by computation
of the generalized eigenpairs of two matrices of size 444\times 444. We then implement all
random sampling methods proposed in section 3. As we see below, the seven strate-
gies have varying degrees of efficiency, but all capture the low rank structure of the
optimal space.

High-energy modes. The first four modes \{ \phi 1,2,3,4\} of the reference solution
are shown in Figure 5.1. These are obtained by following the procedure described
in section 2.3. We note here the presence of boundary layers in \omega \ast , as the functions
exhibit fine scale oscillations near the boundary \partial \omega \ast ; moreover, these oscillations in
the boundary layer are trimmed away when the functions are confined to the patch \omega .

Recovery of general eigenvalues. We now describe results obtained by ran-
dom sampling methods with the seven sampling strategies. For each strategy, we
sample only 20 a-harmonic functions for the computation in (3.2), hoping that these
20 random samples still capture the highest energy modes. In Figure 5.2, we plot (in
log scale) the 20 generalized eigenvalues obtained from each of the seven sampling
strategies, together with the leading 20 eigenvalues from the optimal reference solu-
tion. All methods give almost exponential decay of the eigenvalues. By far, Random
Gaussian and Smooth Boundary (strategies 5 and 7) are the best two strategies for
tracking the eigenvalues of the reference solution.
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Fig. 5.1. The first row shows the four modes \phi 1,2,3,4 supported on \omega \ast , and the second row
shows the same modes confined in \omega . Note that the boundary layers that appear in \omega \ast are not
evident in \omega .

n
0 2 4 6 8 10 12 14 16 18 20

λ
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Optimal
Interior δ
Interior i.i.d. function
Full-domain i.i.d. function
Random Gaussian
Boundary i.i.d. function

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimal

Interior 
Interior i.i.d.

Full-domain i.i.d.

Random Gaussian

Boundary i.i.d.

Exponential Covariance

Smooth Boundary

Fig. 5.2. Left: Eigenvalues obtained from the six different random sampling strategies, using 20
samples each, and the leading 20 eigenvalues from the reference solution. Eigenvalues are computed
from (3.2) for the random sampling strategies and from (2.19) for the reference solution. All methods
show almost exponential decay of the eigenvalues, and Random Gaussian and Smooth Boundary are
the best two sampling strategies in the sense that they match the reference eigenvalues most closely.
Right: Energy E(\Phi r

n) of optimal space and approximate subspaces from different random sampling
strategies using 20 samples. Energy is computed from (4.34). Again, the Random Gaussian and
Smooth Boundary strategies achieve the minimal energy gap from the optimal space.

It is expected that as the number of random samples increases, all random meth-
ods should do better at capturing the eigenvalues of the reference solution. This
phenomenon is evident in Figure 5.3, where we use 300 random samples for all seven
sampling strategies. All strategies except those involving the full-domain i.i.d. func-
tion and possibly the boundary i.i.d. function do well at matching the reference ei-
genvalues.

Figure 5.4 shows the recovery of eigenspace by random sampling procedures. We
regard \Phi 5, defined in (2.11), as the optimal space (the space expanded by the five
modes with highest energies), and use \Phi r

m defined in (3.3) to approximate it for
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Fig. 5.3. The same as Figure 5.2, but with 300 random samples instead of 20. Since Nr \sim Ny,
the eigenvalues and energies obtained from random sampling tend to match the reference eigenvalues
and optimal energy more closely.
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Fig. 5.4. Kolmogorov distance of \Phi 5 to \Phi r
m for m = 5, 6, . . . , 20 sampling modes.

m = 5, 6, . . . , 20. The vertical axis shows Kolmogorov distance, whose computation
is described in Appendix A. As expected, using more random modes leads to better
recovery and thus smaller Kolmogorov distance (4.10). The plots show Kolmogorov
distance decays roughly exponentially fast with respect to m, for all five sampling
strategies. Once again, the Random Gaussian and Smooth Boundary strategies are
by far the best: \Phi r

20 approximates \Phi 5 with accuracy near 10 - 4 or 10 - 5. The other
four strategies attain accuracies of around 10 - 1 to 10 - 2 for m = 20.

Eigenspace recovery for the Random Gaussian strategy. Finally, we focus
on the Random Gaussian sampling strategy, which is clearly one of the most successful
strategies. In Figure 5.5, we plot in the first row the high-energy modes \{ \phi 1,2,3,4\} for
the reference solution, and in the second row we plot the high-energy modes \{ \phi r1,2,3,4\} 
obtained from the Random Gaussian strategy with 20 samples. The similarity is
evident.
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Fig. 5.5. Recovery of high-energy modes using the Random Gaussian sampling strategy, with
20 samples. The first row shows the first four modes of the reference solution; the second row shows
the first four modes obtained from the Random Gaussian sampling strategy.

6. Conclusion. In this paper we study random sampling methods that approx-
imate the optimal solution space that attains Kolmogorov n-width in the context of
generalized finite element methods. It is shown that certain random sampling meth-
ods capture the main part of the local solution spaces with high accuracy, and that
efficiency can be evaluated by the energy contained in the proposed random space.

Numerical comparisons of seven different sampling strategies show that two strate-
gies are superior: Random Gaussian sampling and Smooth Boundary sampling.

Appendix A. Calculation of the Kolmogorov distance. Suppose we are
given the optimal space

\Phi m = Span\sansX , where \sansX = [\phi 1, . . . , \phi m] ,

and a proposed space

\Phi r
n = Span\sansY , where \sansY = [\phi r1, . . . , \phi 

r
n] , where n \geq m,

such that
\langle \phi i, \phi j\rangle \scrE (\omega \ast ) = \delta ij and \langle \phi ri , \phi rj\rangle \scrE (\omega \ast ) = \delta ij .

Recall the following definition of Kolmogorov distance from (4.10):

d(\Phi r
n,\Phi m) = max

x\in \Phi m,
\| x\| \scrE (\omega \ast )\leq 1

min
y\in \Phi r

n

\| x - y\| \scrE (\omega ) .

To calculate d(\Phi r
n,\Phi m) explicitly, we write x = \sansX \alpha for some \alpha \in Rm, and y = \sansY \beta for

some \beta \in Rn. The Kolmogorov distance is achieved when \| x\| \scrE (\omega \ast ) = 1, which implies
that \| \alpha \| = 1, where this \| \cdot \| is the usual Euclidean norm on Rm. By expanding the
objective, we have

1

2
\| x - y\| 2\scrE (\omega ) =

1

2
\langle \sansX \alpha  - \sansY \beta ,\sansX \alpha  - \sansY \beta \rangle \scrE (\omega )

=
1

2
\beta \top \sansY A\beta  - \alpha \top CA\beta +

1

2
\alpha \top \sansX A\alpha ,
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where (\sansY A)ij = \langle \phi ri , \phi rj\rangle \scrE (\omega ), (\sansX A)ij = \langle \phi i, \phi j\rangle \scrE (\omega ), and (CA)ij = \langle \phi j , \phi ri \rangle \scrE (\omega ). The
minimizing value of \beta is given explicitly by

\beta = \sansY  - 1
A CA\alpha ,

for which we have

1

2
d(\Phi r

n,\Phi m)2 = max
\| \alpha \| =1

\alpha \top (\sansX A  - C\top 
A\sansY  - 1

A CA)\alpha = \| \sansX A  - C\top 
A\sansY  - 1

A CA\| 22 .

The Kolmogorov distance is therefore

d(\Phi r
n,\Phi m) =

\surd 
2\| \sansX A  - C\top 

A\sansY  - 1
A CA\| 2 .

Appendix B. Well-posedness of energy \bfitE (\bfscrZ ). We show that the energy
defined in Definition 4.1 is a well-defined quantity. More specifically, given a k-
dimensional space \scrZ and two different \sansB -orthonormal matrices \sansZ 1,\sansZ 2 \in Rn\times k whose
columns span the space \scrZ , we show that they yield the same value of E(\scrZ ):

(B.1) E(\scrZ ) =
Tr(\sansZ \top 

1 \sansA \sansZ 1)

Tr(\sansZ \top 
1 \sansB \sansZ 1)

=
Tr(\sansZ \top 

2 \sansA \sansZ 2)

Tr(\sansZ \top 
2 \sansB \sansZ 2)

.

Proof. Since \sansZ 1 and \sansZ 2 share the column space \scrZ , there must exist an invertible
matrix \sansP \in Rk\times k such that \sansZ 1 = \sansZ 2\sansP .

We show first that \sansP is unitary. Because both \sansZ 1 and \sansZ have \sansB -orthonormal
columns, we have

\sansZ \top 
1 \sansB \sansZ 1 = \sansZ \top 

2 \sansB \sansZ 2 = \sansI ,

which implies that

\sansI = \sansZ \top 
1 \sansB \sansZ 1 = (\sansZ 2\sansP )

\top \sansB (\sansZ 2\sansP ) = \sansP \top \sansZ \top 
2 \sansB \sansZ 2\sansP = \sansP \top \sansP .

By definition of \sansZ 1 and \sansZ 2, we have

Tr(\sansZ \top 
1 \sansA \sansZ 1)

Tr(\sansZ \top 
1 \sansB \sansZ 1)

=
Tr(\sansZ \top 

1 \sansA \sansZ 1)

k
,

Tr(\sansZ \top 
2 \sansA \sansZ 2)

Tr(\sansZ \top 
2 \sansB \sansZ 2)

=
Tr(\sansZ \top 

2 \sansA \sansZ 2)

k
,

so our claim (B.1) will hold if we can show that Tr(\sansZ \top 
1 \sansA \sansZ 1) = Tr(\sansZ \top 

2 \sansA \sansZ 2). Indeed
this follows from

Tr(\sansZ \top 
1 \sansA \sansZ 1) = Tr

\bigl( 
(\sansZ 2\sansP )

\top \sansA (\sansZ 2\sansP )
\bigr) 
= Tr

\bigl( 
\sansP \top \sansZ \top 

2 \sansA \sansZ 2\sansP 
\bigr) 
= Tr

\bigl( 
\sansZ \top 
2 \sansA \sansZ 2\sansP \sansP 

\top \bigr) = Tr(\sansZ \top 
2 \sansA \sansZ 2),

where the last equality comes from the orthonormality of \sansP .
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